Dynamics of electroencephalogram entropy and pitfalls of scaling detection.
نویسندگان
چکیده
In recent studies a number of research groups have determined that human electroencephalograms (EEG) have scaling properties. In particular, a crossover between two regions with different scaling exponents has been reported. Herein we study the time evolution of diffusion entropy to elucidate the scaling of EEG time series. For a cohort of 20 awake healthy volunteers with closed eyes, we find that the diffusion entropy of EEG increments (obtained from EEG waveforms by differencing) exhibits three features: short-time growth, an alpha wave related oscillation whose amplitude gradually decays in time, and asymptotic saturation which is achieved after approximately 1 s. This analysis suggests a linear, stochastic Ornstein-Uhlenbeck Langevin equation with a quasiperiodic forcing (whose frequency and/or amplitude may vary in time) as the model for the underlying dynamics. This model captures the salient properties of EEG dynamics. In particular, both the experimental and simulated EEG time series exhibit short-time scaling which is broken by a strong periodic component, such as alpha waves. The saturation of EEG diffusion entropy precludes the existence of asymptotic scaling. We find that the crossover between two scaling regions seen in detrended fluctuation analysis (DFA) of EEG increments does not originate from the underlying dynamics but is merely an artifact of the algorithm. This artifact is rooted in the failure of the "trend plus signal" paradigm of DFA.
منابع مشابه
Detection of Fatigue from Electroencephalogram Signal During Neurofeedback Training
Timely diagnosis of fatigue helps to improve the quality and effectiveness of neurofeedback training. Neurofeedback training (NFT) is a method that can change brain activity by altering brain signal fluctuations and teaches individuals to produce or reproduce their brain activity patterns in order to improve performance. Neurofeedback training has been widely utilized over the recent years owi...
متن کاملDetection of schizophrenia patients using convolutional neural networks from brain effective connectivity maps of electroencephalogram signals
Background: Schizophrenia is a mental disorder that severely affects the perception and relations of individuals. Nowadays, this disease is diagnosed by psychiatrists based on psychiatric tests, which is highly dependent on their experience and knowledge. This study aimed to design a fully automated framework for the diagnosis of schizophrenia from electroencephalogram signals using advanced de...
متن کاملA New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal
The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...
متن کاملA Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis
Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...
متن کاملA New Approach to Detect Congestive Heart Failure Using Symbolic Dynamics Analysis of Electrocardiogram Signal
The aim of this study is to show that the measures derived from Electrocardiogram (ECG) signals many a time perform better than the same measures obtained from heart rate (HR) signals. A comparison was made to investigate how far the nonlinear symbolic dynamics approach helps to characterize the nonlinear properties of ECG signals and HR signals, and thereby discriminate between normal and cong...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 81 3 Pt 1 شماره
صفحات -
تاریخ انتشار 2010